NONTECHNICAL SOIL DESCRIPTIONS These descriptions describe soil properties or management considerations specific to a soil map unit and components of map units. These reports are generated from the National Soil Information System soil database for distribution to land users. - AdA--Adelphia Fine Sandy Loam, 0 To 2 Percent Slopes Adelphia component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - AdB2--Adelphia Fine Sandy Loam, 2 To 5 Percent Slopes, Modera Tely Eroded Adelphia component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - Adc2--Adelphia Fine Sandy Loam, 5 To 10 Percent Slopes, Moder Ately Eroded Adelphia component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - AhA--Adelphia Silt Loam, 0 To 2 Percent Slopes Adelphia component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - AhB2--Adelphia Silt Loam, 2 To 5 Percent Slopes, Moderately E Roded Adelphia component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - AuB2--Aura Gravelly Loam, 2 To 6 Percent Slopes, Moderately E Roded Aura component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - Auc2--Aura Gravelly Loam, 6 To 12 Percent Slopes, Moderately Eroded Aura component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - Auc3--Aura Gravelly Loam, 6 To 12 Percent Slopes, Severely Er Oded Aura component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - AuD--Aura Gravelly Loam, 12 To 20 Percent Slopes Aura component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - AvE--Aura And Croom Gravelly Loams, 20 To 50 Percent Slopes Aura component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. This component is not a hydric soil. Croom component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 7e. This component is not a hydric soil. - BeA--Beltsville Fine Sandy Loam, 0 To 2 Percent Slopes Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - BeB2--Beltsville Fine Sandy Loam, 2 To 5 Percent Slopes, Mode Rately Eroded Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - BeC2--Beltsville Fine Sandy Loam, 5 To 10 Percent Slopes, Mod Erately Eroded Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - BlA--Beltsville Silt Loam, 0 To 2 Percent Slopes Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - BlB2--Beltsville Silt Loam, 2 To 5 Percent Slopes, Moderately Eroded Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - BlC2--Beltsville Silt Loam, 5 To 10 Percent Slopes, Moderatel Y Eroded Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - BlC3--Beltsville Silt Loam, 5 To 10 Percent Slopes, Severely Eroded Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - BlD3--Beltsville Silt Loam, 10 To 15 Percent Slopes, Severely Eroded Beltsville component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. - BmB--Beltsville-Urban Land Complex, 0 To 5 Percent Slopes Beltsville component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. BmC--Beltsville-Urban Land Complex, 5 To 15 Percent Slopes Beltsville component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. Bn--Bibb Sandy Loam Bibb component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is poorly drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 9 inches. There are no saline horizons. It is in nonirrigated land capability class 5w. This component is a hydric soil. Bo--Bibb Silt Loam Bibb component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is poorly drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 9 inches. There are no saline horizons. It is in nonirrigated land capability class 5w. This component is a hydric soil. Br--Bibb-Urban Land Complex Bibb component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is poorly drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 9 inches. There are no saline horizons. It is in nonirrigated land capability class 5w. This component is a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. BtB2--Butlertown Silt Loam, 0 To 5 Percent Slopes, Moderately Eroded Butlertown component makes up 90 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. CaB2--Chillum Silt Loam, 0 To 6 Percent Slopes, Moderately Er Oded Chillum component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. CaC2--Chillum Silt Loam, 6 To 12 Percent Slopes, Moderately E Roded Chillum component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. CaC3--Chillum Silt Loam, 6 To 12 Percent Slopes, Severely Ero Ded Chillum component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. CaD2--Chillum Silt Loam, 12 To 20 Percent Slopes, Moderately Eroded Chillum component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. CbB--Chillum-Urban Land Complex, 0 To 6 Percent Slopes Chillum component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. CbC--Chillum-Urban Land Complex, 6 To 12 Percent Slopes Chillum component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. CbE--Chillum-Urban Land Complex, 12 To 35 Percent Slopes Chillum component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. CcC3--Christiana Clay, 5 To 10 Percent Slopes, Severely Erode D Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. CcD3--Christiana Clay, 10 To 15 Percent Slopes, Severely Erod Ed Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. CcE3--Christiana Clay, 15 To 35 Percent Slopes, Severely Erod Ed Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. CdA--Christiana Fine Sandy Loam, 0 To 2 Percent Slopes Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2s. This component is not a hydric soil. CdB2--Christiana Fine Sandy Loam, 2 To 5 Percent Slopes, Mode Rately Eroded Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - CdC2--Christiana Fine Sandy Loam, 5 To 10 Percent Slopes, Mod Erately Eroded Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - CdD2--Christiana Fine Sandy Loam, 10 To 15 Percent Slopes, Mo Derately Eroded Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - CeA--Christiana Silt Loam, 0 To 2 Percent Slopes Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2s. This component is not a hydric soil. - CeB2--Christiana Silt Loam, 2 To 5 Percent Slopes, Moderately Eroded Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - CeC2--Christiana Silt Loam 5 To 10 Percent Slopes Moderately Eroded Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - CeD2--Christiana Silt Loam, 10 To 25 Percent Slopes, Moderate Ly Eroded Christiana component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. - CfB--Christiana-Urban Land Complex, 0 To 5 Percent Slopes Christiana component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. - CfC--Christiana-Urban Land Complex, 5 To 15 Percent Slopes Christiana component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. - CfE--Christiana-Urban Land Complex, 15 To 40 Percent Slopes Christiana component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. Cg--Clay Pits Clay Pits component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. Ch--Codorus Silt Loam Codorus component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .49. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 18 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. Ck--Codorus-Urban Land Complex Codorus component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 18 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. Cl--Colemantown Loam Colemantown component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is poorly drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. CmA--Collington Fine Sandy Loam, 0 To 2 Percent Slopes Collington component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. CmB2--Collington Fine Sandy Loam, 2 To 5 Percent Slopes, Mode Rately Eroded Collington component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. CmC2--Collington Fine Sandy Loam, 5 To 10 Percent Slopes, Mod Erately Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. CmC3--Collington Fine Sandy Loam, 5 To 10 Percent Slopes, Severely Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - CmD2--Collington Fine Sandy Loam, 10 To 15 Percent Slopes, Mo Derately Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - CmD3--Collington Fine Sandy Loam, 10 To 15 Percent Slopes, Se Verely Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. - CmE2--Collington Fine Sandy Loam, 15 To 40 Percent Slopes, Mo Derately Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. - CmE3--Collington Fine Sandy Loam, 15 To 30 Percent Slopes, Se Verely Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. - CnB2--Collington Loamy Fine Sand, 0 To 5 Percent Slopes, Mode Rately Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2s. This component is not a hydric soil. - CnC2--Collington Loamy Fine Sand, 5 To 10 Percent Slopes, Mod Erately Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3s. This component is not a hydric soil. - CnD2--Collington Loamy Fine Sand, 10 To 15 Percent Slopes, Mo Derately Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - CoA--Collington Silt Loam, 0 To 2 Percent Slopes Collington component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. - CoB2--Collington Silt Loam, 2 To 5 Percent Slopes, Moderately Eroded Collington component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - CoC3--Collington Silt Loam, 5 To 10 Percent Slopes, Severely Eroded Collington component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. CpB--Collington-Urban Land Complex, 0 To 5 Percent Slopes Collington component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. CpC--Collington-Urban Land Complex, 5 To 15 Percent Slopes Collington component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. - Cr--Comus Silt Loam Comus component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. - CsB2--Croom Gravelly Loam, 3 To 8 Percent Slopes Moderately E Roded Croom component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - CsC2--Croom Gravelly Loam, 8 To 15 Percent Slopes, Moderately Eroded Croom component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - CsC3--Croom Gravelly Loam, 8 To 15 Percent Slopes, Severely E Roded Croom component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - CtB2--Croom Gravelly Sandy Loam, 3 To 8 Percent Slopes, Moder Ately Eroded Croom component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - CtC2--Croom Gravelly Sandy Loam, 8 To 15 Percent Slopes, Mode Rately Eroded Croom component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - CtC3--Croom Gravelly Sandy Loam, 8 To 15 Percent Slopes, Seve Rely Eroded Croom component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 4e. This component is not a hydric soil. CtD2--Croom Gravelly Sandy Loam, 15 To 25 Percent Slopes, Mod Erately Eroded Croom component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 4e. This component is not a hydric soil. CuB--Croom-Urban Land Complex, 0 To 8 Percent Slopes Croom component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 2e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. CuC--Croom-Urban Land Complex, 8 To 15 Percent Lopes Croom component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. CuE--Croom-Urban Land Complex, 15 To 35 Percent Slopes Croom component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 6e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. DoA--Donlonton Fine Sandy Loam, 0 To 2 Percent Slopes Donlonton component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 21 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. DoB2--Donlonton Fine Sandy Loam, 2 To 5 Percent Slopes, Moder Ately Eroded Donlonton component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 21 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. Ek--Elkton Silt Loam Elkton component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is poorly drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. ElB--Elkton Fine Sandy Loam, Thick Surface, 0 To 5 Percent S Lopes Elkton component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .24. This soil is poorly drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. EmA--Elsinboro Loam, 0 To 2 Percent Slopes Elsinboro component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 60 inches. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. EmB2--Elsinboro Loam, 2 To 5 Percent Slopes Moderately Eroded Elsinboro component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 60 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. EnA--Elsinboro Sandy Loam, 0 To 2 Percent Slopes Elsinboro component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 60 inches. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. EnB2--Elsinboro Sandy Loam, 2 To 5 Percent Slopes, Moderately Eroded Elsinboro component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 60 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. Enc2--Elsinboro Sandy Loam, 5 To 10 Percent Slopes, Moderatel Y Eroded Elsinboro component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 60 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. EuB--Elsinboro-Urban Land Complex, 0 To 5 Percent Slopes Elsinboro component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 60 inches. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. F1--Fallsington Loam Fallsington component makes up 100 percent of the map unit. Prime farmland if drained. The assigned Kw erodibility factor is .32. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. Fs--Fallsington Sandy Loam Fallsington component makes up 100 percent of the map unit. Prime farmland if drained. The assigned Kw erodibility factor is .24. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. Fu--Fallsington-Urban Land Complex Fallsington component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .24. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. GaB--Galestown Gravelly Loamy Sand, 0 To 8 Percent Slopes Galestown component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4s. This component is not a hydric soil. GaC--Galestown Gravelly Loamy Sand, 8 To 15 Percent Slopes Galestown component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil. GdB--Galestown Loamy Sand, 0 To 8 Percent Slopes Galestown component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3s. This component is not a hydric soil. GdC--Galestown Loamy Sand, 8 To 15 Percent Slopes Galestown component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil. GeB--Galestown-Evesboro Loamy Sands, 0 To 8 Percent Slopes Galestown component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3s. This component is not a hydric soil. Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil. GeC--Galestown-Evesboro Loamy Sands, 8 To 15 Percent Slopes Galestown component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil. Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil. GmB--Galestown-Urban Land Complex, 0 To 8 Percent Slopes Galestown component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3s. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. GmC--Galestown-Urban Land Complex, 8 To 15 Percent Slopes Galestown component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. GnC2--Glenelg Loam, 8 To 15 Percent Slopes, Moderately Eroded Glenelg component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. GoB--Glenelg-Urban Land Complex, 0 To 8 Percent Slopes Glenelg component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. Gp--Gravel And Borrow Pits Gravel And Borrow Pi component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .02. The slowest permeability within 60 inches is rapid. Available water capacity is low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. Ha-Hatboro Silt Loam Hatboro component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is poorly drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 3 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. HcC3--Howell Clay Loam, 6 To 12 Percent Slopes, Severely Erod Ed Howell component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. HcD3--Howell Clay Loam, 12 To 20 Percent Slopes, Severely Ero Ded Howell component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. HoB2--Howell Fine Sandy Loam, 2 To 6 Percent Slopes, Moderate Ly Eroded Howell component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. HoC2--Howell Fine Sandy Loam, 6 To 12 Percent Slopes, Moderat Ely Eroded Howell component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - HwB2--Howell Silt Loam, 0 To 6 Percent Slopes, Moderately Ero Ded Howell component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - HwC2--Howell Silt Loam, 6 To 12 Percent Slopes, Moderately Er Oded Howell component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - HwD2--Howell Silt Loam, 12 To 20 Percent Slopes, Moderately E Roded Howell component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. - HwE2--Howell Silt Loam, 20 To 35 Percent Slopes, Moderately E Roded Howell component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 36 inches. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. - Hy--Hyde Silt Loam Hyde component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is very poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 9 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. - Ik--Iuka Fine Sandy Loam Iuka component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .24. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - ImA--Iuka Sandy Loam, Local Alluvium, 0 To 2 Percent Slopes Iuka component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .24. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - ImB--Iuka Sandy Loam, Local Alluvium, 2 To 5 Percent Slopes Iuka component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .24. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - In--Iuka Silt Loam Iuka component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. ToA--Iuka Silt Loam, Local Alluvium, 0 To 2 Percent Slopes Iuka component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. IOB--Iuka Silt Loam, Local Alluvium, 2 To 5 Percent Iuka component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. Iu--Iuka-Urban Land Complex Iuka component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. Ix--Iuka-Urban Land Complex, Local Alluvium Iuka component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 24 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. Jo--Johnston Silt Loam Johnston component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is very poorly drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 0 inches. There are no saline horizons. It is in nonirrigated land capability class 4w. This component is a hydric soil. Johnston component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is very poorly drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 0 inches. There are no saline horizons. It is in nonirrigated land capability class 7w. This component is a hydric soil. Ju--Johnston-Urban Land Complex Johnston component makes up 55 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is very poorly drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 0 inches. There are no saline horizons. It is in nonirrigated land capability class 7w. This component is a hydric soil. Urban Land component makes up 45 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. KeA--Keyport Fine Sandy Loam, 0 To 2 Percent Slopes Keyport component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - KeB2--Keyport Fine Sandy Loam, 2 To 5 Percent Slopes, Moderat Ely Eroded Keyport component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - KeC2--Keyport Fine Sandy Loam, 5 To 10 Percent Slopes, Modera Tely Eroded Keyport component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - KpA--Keyport Silt Loam, 0 To 2 Percent Slopes Keyport component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - KpB2--Keyport Silt Loam, 2 To 5 Percent Slopes Moderately Ero Ded Keyport component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - KpC2--Keyport Silt Loam, 5 To 15 Percent Slopes, Moderately E Roded Keyport component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - KrC3--Keyport Silty Clay Loam, 5 To 10 Percent Slopes, Severe Ly Eroded Keyport component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - KuB--Keyport-Urban Land Complex, 0 To 10 Percent Slopes Keyport component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 33 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. - Ky--Klej Loamy Sand Klej component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat poorly drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 18 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is not a hydric soil. - LeA--Leonardtown Silt Loam, 0 To 2 Percent Slopes Leonardtown component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is poorly drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 4w. This component is a hydric soil. LeB--Leonardtown Silt Loam, 2 To 5 Percent Slopes Leonardtown component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is poorly drained. The slowest permeability within 60 inches is slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 4w. This component is a hydric soil. # Ma--Made Land Made Land component makes up 100 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. MfB2--Magnolia Fine Sandy Loam, 2 To 5 Percent Slopes Moderat Ely Eroded Magnolia component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 51 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. MgB2--Magnolia Silt Loam, 2 To 5 Percent Slopes, Moderately E Roded Magnolia component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 51 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. MgC2--Magnolia Silt Loam, 5 To 10 Percent Slopes Moderately E Roded Magnolia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 51 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. MhB2--Manor Loam, 3 To 8 Percent Slopes, Moderately Eroded Manor component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. MhC2--Manor Loam, 8 To 15 Percent Slopes, Moderately Eroded Manor component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. MhD2--Manor Loam, 15 To 25 Percent Slopes, Moderately Eroded Manor component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. MhF2--Manor Loam, 25 To 60 Percent Slopes, Moderately Eroded Manor component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. MkC--Manor-Urban Land Complex, 8 To 15 Percent Slopes Manor component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. MlA--Marr Fine Sandy Loam, 0 To 2 Percent Slopes Marr component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. MlB2--Marr Fine Sandy Loam, 2 To 6 Percent Slopes, Moderately Eroded Marr component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. MlB3--Marr Fine Sandy Loam, 2 To 6 Percent Slopes, Severely E Roded Marr component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. M1C2--Marr Fine Sandy Loam, 6 To 12 Percent Slopes, Moderatel Y Eroded Marr component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. M1C3--Marr Fine Sandy Loam, 6 To 12 Percent Slopes, Severely Eroded Marr component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. M1D3--Marr Fine Sandy Loam, 12 To 20 Percent Slopes, Severely Eroded Marr component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. MlE--Marr Fine Sandy Loam, 20 To 35 Percent Slopes Marr component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. MmA--Matapeake Fine Sandy Loam, 0 To 2 Percent Slopes Matapeake component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. MmB2--Matapeake Fine Sandy Loam, 2 To 5 Percent Slopes, Moder Ately Eroded Matapeake component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - MnA--Matapeake Silt Loam, 0 To 2 Percent Slopes Matapeake component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. - MnB2--Matapeake Silt Loam, 2 To 5 Percent Slopes, Moderately Eroded Matapeake component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - MnC2--Matapeake Silt Loam, 5 To 10 Percent Slopes, Moderately Eroded Matapeake component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - MnC3--Matapeake Silt Loam, 5 To 10 Percent Slopes, Severely E Roded Matapeake component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - MnD2--Matapeake Silt Loam, 10 To 15 Percent Slopes, Moderatel Y Eroded Matapeake component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - MoB2--Matapeake Silt Loam, Silty Substratum, 2 To 5 Percent S Lopes, Moderately Eroded Matapeake component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - MpB--Matapeake-Urban Land Complex, 0 To 5 Percent Slopes Matapeake component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. - MpC--Matapeake-Urban Land Complex, 5 To 15 Percent Slopes Matapeake component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. - MrA--Matawan Fine Sandy Loam, 0 To 2 Percent Slopes Matawan component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - MrB2--Matawan Fine Sandy Loam, 2 To 5 Percent Slopes, Moderat Ely Eroded Matawan component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - Mrc2--Matawan Fine Sandy Loam, 5 To 10 Percent Slopes, Modera Tely Eroded Matawan component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - MsA--Matawan Loamy Sand, 0 To 2 Percent Slopes Matawan component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - MsB--Matawan Loamy Sand, 2 To 5 Percent Slopes Matawan component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .32. This soil is moderately well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - MtA--Mattapex Fine Sandy Loam, 0 To 2 Percent Slopes Mattapex component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 27 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - MtB2--Mattapex Fine Sandy Loam, 2 To 5 Percent Slopes, Modera Tely Eroded Mattapex component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .37. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 27 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - MuA--Mattapex Silt Loam, 0 To 2 Percent Slopes Mattapex component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 27 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - MuB2--Mattapex Silt Loam, 2 To 5 Percent Slopes, Moderately E Roded Mattapex component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 27 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - MvB--Mattapex-Urban Land Complex, 0 To 5 Percent Slopes Mattapex component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 27 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. # Mw--Mixed Alluvial Land Mixed Alluvial Land component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is poorly drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 9 inches. There are no saline horizons. It is in nonirrigated land capability class 5w. This component is a hydric soil. MxC3--Monmouth Clay Loam, 5 To 10 Percent Slopes, Severely Er Oded Monmouth component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 42 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. MxD3--Monmouth Clay Loam, 10 To 30 Percent Slopes, Severely E Roded Monmouth component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 42 inches. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. MyA--Monmouth Fine Sandy Loam, 0 To 2 Percent Slopes Monmouth component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 42 inches. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. MyB2--Monmouth Fine Sandy Loam, 2 To 5 Percent Slopes, Modera Tely Eroded Monmouth component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 42 inches. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. MyC2--Monmouth Fine Sandy Loam, 5 To 10 Percent Slopes Modera Tely Eroded Monmouth component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 42 inches. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. MyD2--Monmouth Fine Sandy Loam, 10 To 15 Percent Moderately E Roded Monmouth component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .43. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 42 inches. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. MzB2--Muirkirk Loamy Sand, 0 To 5 Percent Slopes, Moderately Eroded Muirkirk component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 2s. This component is not a hydric soil. MzC2--Muirkirk Loamy Sand, 5 To 10 Percent Slopes, Moderately Eroded Muirkirk component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - Och-Ochlockonee Sandy Loam, Local Alluvium, 0 To 2 Percent Slopes Ochlockonee component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 48 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - OcB--Ochlockonee Sandy Loam, Local Alluvium, 2 To 5 Percent Slopes Ochlockonee component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 48 inches. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. - Occ--Ochlockonee Sandy Loam, Local Alluvium, 5 To 10 Percent Slopes Ochlockonee component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 48 inches. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. - OhA--Ochlockonee Silt Loam, Local Alluvium, 0 To 2 Percent S Lopes Ochlockonee component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .24. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is occasionally flooded and is not ponded. The top of the seasonal high water table is at 48 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. - OhB--Ochlockonee Silt Loam, Local Alluvium 2 To 5 Percent Sl Opes Ochlockonee component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .24. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 48 inches. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. - Ok--Ochlockonee, Local Alluvium-Urban Land Complex Ochlockonee, Local A component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is rarely flooded and is not ponded. The top of the seasonal high water table is at 48 inches. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. - Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. - Ol--Othello Fine Sandy Loam Othello component makes up 100 percent of the map unit. Prime farmland if drained. The assigned Kw erodibility factor is .37. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. - Ot--Othello Silt Loam Othello component makes up 100 percent of the map unit. Prime farmland if drained. The assigned Kw erodibility factor is .37. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. - Pr--Plummer And Rutlege Loamy Sands Plummer component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .10. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. Rutlege component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is very poorly drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 0 inches. There are no saline horizons. It is in nonirrigated land capability class 4w. This component is a hydric soil. RdA--Rumford Loamy Sand, 0 To 2 Percent Slopes Rumford component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2s. This component is not a hydric soil. RdB2--Rumford Loamy Sand, 2 To 5 Percent Slopes, Moderately E Roded Rumford component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2s. This component is not a hydric soil. RdC2--Rumford Loamy Sand, 5 To 10 Percent Slopes, Moderately Eroded Rumford component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. RdC3--Rumford Loamy Sand, 5 To 10 Percent Slopes, Severely Er Oded Rumford component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. RdD2--Rumford Loamy Sand, 10 To 15 Percent Slopes, Moderately Eroded Rumford component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. ReB--Rumford-Evesboro Loamy Sands, 2 To 6 Percent Slopes Rumford component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2s. This component is not a hydric soil. Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil. ReC--Rumford-Evesboro Loamy Sands, 6 To 12 Percent Slopes Rumford component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil. ReD--Rumford-Evesboro Loamy Sands, 12 To 20 Percent Slopes Rumford component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil. - SaE--Sandy Land, Steep Sandy Land component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is somewhat excessively drained. The slowest permeability within 60 inches is rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil. - ScB--Sandy And Clayey Land, Gently Sloping Sandy And Clayey Lan component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2s. This component is not a hydric soil. - Scc--Sandy And Clayey Land, Sloping Sandy And Clayey Lan component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - ScD--Sandy And Clayey Land, Moderately Steep Sandy And Clayey Lan component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is well drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. - SfB2--Sassafras Gravelly Loam, 2 To 5 Percent Slopes, Moderat Ely Eroded Sassafras component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - SfC2--Sassafras Gravelly Loam, 5 To 10 Percent Slopes, Modera Tely Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - SfD2--Sassafras Gravelly Loam, 10 To 15 Percent Slopes, Moder Ately Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. - SgB2--Sassafras Gravelly Sandy Loam, 2 To 5 Percent Slopes, M Oderately Eroded Sassafras component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - SgC2--Sassafras Gravelly Sand Loam, 5 To 10 Percent Slopes, M Oderately Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - SgC3--Sassafras Gravelly Sandy Loam, 5 To 10 Percent, Slopes, Moderately Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - SgD2--Sassafras Gravelly Sandy Loam, 10 To 15 Percent Slopes, Moderately Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. This component is not a hydric soil. - SgD3--Sassafras Gravelly Sandy Loam, 10 To 15 Percent Slopes, Severely Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. - SgE--Sassafras Gravelly Sandy Loam, 15 To 30 Percent Slopes Sassafras component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. - ShA--Sassafras Sandy Loam, 0 To 2 Percent Slopes Sassafras component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. - ShB2--Sassafras Sandy Loam, 2 To 5 Percent Slopes, Moderately Eroded Sassafras component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - ShC2--Sassafras Sandy Loam, 5 To 10 Percent Slopes, Moderatel Y Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - ShC3--Sassafras Sandy Loam, 5 To 10 Percent Slopes, Severely Eroded Sassafras component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - SkB--Sassafras-Urban Land Complex, 0 To 5 Percent Slopes Sassafras component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. SkC--Sassafras-Urban Land Complex, 5 To 15 Percent Slopes Sassafras component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. SkE--Sassafras-Urban Land Complex, 15 To 30 Percent Slopes Sassafras component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. SlD--Sassafras-Collington-Aura Gravelly Sandy Loams, 12 To 2 0 Percent Slopes Sassafras component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. Collington component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. Aura component makes up 20 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. SlE--Sassafras-Collington-Aura Gravelly Sandy Loams, 20 To 3 5 Percent Slopes Sassafras component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .20. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. Collington component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. Aura component makes up 20 percent of the map unit. The assigned Kw erodibility factor is .37. This soil is well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. SmA--Shrewsbury Fine Sandy Loam, 0 To 2 Percent Slopes Shrewsbury component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. - SmB--Shrewsbury Fine Sandy Loam, 2 To 5 Percent Slopes Shrewsbury component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. - SnA--Shrewsbury Silt Loam, 0 To 2 Percent Slopes Shrewsbury component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. - So--Shrewsbury-Urban Land Complex Shrewsbury component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is poorly drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 6 inches. There are no saline horizons. It is in nonirrigated land capability class 3w. This component is a hydric soil. - Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. - SpB--Silty And Clayey Land, Gently Sloping Silty And Clayey Land, Gently component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - SpC--Silty And Clayey Land, Sloping Silty And Clayey Land, Slopin component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - SpE--Silty And Clayey Land, Steep Silty And Clayey Land, Steep component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .28. This soil is well drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is moderate. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7e. This component is not a hydric soil. - StB2--Sunnyside Fine Sandy Loam, 0 To 5 Percent Slopes, Moder Ately Eroded Sunnyside component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .24. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - StC2--Sunnyside Fine Sandy Loam, 5 To 10 Percent Slopes, Mode Rately Eroded Sunnyside component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .24. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - StD2--Sunnyside Fine Sandy Loam, 10 To 15 Percent Slopes, Mod Erately Eroded Sunnyside component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .24. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - StE--Sunnyside Fine Sandy Loam, 15 To 30 Percent Slopes Sunnyside component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .24. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. - SuB2--Sunnyside Loam, 0 To 5 Percent Slopes, Moderately Erode D Sunnyside component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - Suc2--Sunnyside Loam, 5 To 10 Percent Slopes, Moderately Erod Ed Sunnyside component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - SuD2--Sunnyside Loam, 10 To 15 Percent Slopes, Moderately Ero Ded Sunnyside component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - SvC3--Sunnyside Sandy Clay Loam, 5 To 10 Percent Slopes, Seve Rely Eroded Sunnyside component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - SvD3--Sunnyside Sandy Clay Loam, 10 To 15 Percent Slopes, Sev Erely Eroded Sunnyside component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. - SwB--Sunnyside-Urban Land Complex, 0 To 5 Percent Slopes Sunnyside component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. - SwC--Sunnyside-Urban Land Complex, 5 To 10 Percent Slopes Sunnyside component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .32. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. - Sx--Swamp Manahawkin component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .05. This soil is very poorly drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 0 inches. There are no saline horizons. It is in nonirrigated land capability class 7w. This component is a hydric soil. ## Tm--Tidal Marsh - Westbrook component makes up 100 percent of the map unit. The assigned Kw erodibility factor is This soil is very poorly drained. The slowest permeability within 60 inches is very slow. Available water capacity is very high and shrink swell potential is low. This soil is frequently flooded and is not ponded. The top of the seasonal high water table is at 0 inches. The soil has a moderately saline horizon. It is in nonirrigated land capability class 8w. This component is a hydric soil. - WaA--Westphalia Fine Sandy Loam, 0 To 2 Percent Slopes Westphalia component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 1. This component is not a hydric soil. - WaB2--Westphalia Fine Sandy Loam, 2 To 6 Percent Slopes, Mode Rately Eroded Westphalia component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - WaB3--Westphalia Fine Sandy Loam, 2 To 6 Percent Slopes, Seve Rely Eroded Westphalia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - WaC2--Westphalia Fine Sandy Loam, 6 To 12 Percent Slopes, Mod Erately Eroded Westphalia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. - Wac3--Westphalia Fine Sandy Loam, 6 To 12 Percent Slopes, Sev Erely Eroded Westphalia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - WaD2--Westphalia Fine Sandy Loam, 12 To 20 Percent Slopes, Mo Derately Eroded Westphalia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. - WaD3--Westphalia Fine Sandy Loam, 12 To 20 Percent Slopes, Se Verely Eroded Westphalia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. - WbB2--Westphalia Very Fine Sandy Loam, 0 To 6 Percent Slopes, Moderately Eroded Westphalia component makes up 100 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. - WbC2--Westphalia Very Fine Sandy Loam, 6 To 12 Percent Slopes, Moderately Eroded Westphalia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. WbD2--Westphalia Very Fine Sandy Loam, 12 To 20 Percent Slope S, Moderately Eroded Westphalia component makes up 100 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. WeB2--Westphalia-Evesboro Complex, 2 To 6 Percent Slopes, Mod Erately Eroded Westphalia component makes up 50 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 2e. This component is not a hydric soil. Evesboro component makes up 30 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil. WeC2--Westphalia-Evesboro Complex, 6 To 12 Percent Slopes, Mo Derately Eroded Westphalia component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 3e. This component is not a hydric soil. Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil. WeC3--Westphalia-Evesboro Complex, 6 To 12 Percent Slopes, Se Verely Eroded Westphalia component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 4e. This component is not a hydric soil. Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil. WeD3--Westphalia-Evesboro Complex, 12 To 20 Percent Slopes, S Everely Eroded Westphalia component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .49. This soil is well drained. The slowest permeability within 60 inches is moderate. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 6e. This component is not a hydric soil. Evesboro component makes up 30 percent of the map unit. The assigned Kw erodibility factor is .17. This soil is excessively drained. The slowest permeability within 60 inches is moderately rapid. Available water capacity is high and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 7s. This component is not a hydric soil. WoA--Woodstown Sandy Loam, 0 To 2 Percent Slopes Woodstown component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .24. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. WoB2--Woodstown Sandy Loam, 2 To 5 Percent Slopes, Moderately Eroded Woodstown component makes up 95 percent of the map unit. All areas are prime farmland. The assigned Kw erodibility factor is .24. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. WoC2--Woodstown Sandy Loam, 5 To 10 Percent Slopes, Moderatel Y Eroded Woodstown component makes up 95 percent of the map unit. The assigned Kw erodibility factor is .24. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. There are no saline It is in nonirrigated land capability class 3e. This component is not a hydric soil. Wu--Woodstown-Urban Land Complex Woodstown component makes up 50 percent of the map unit. The assigned Kw erodibility factor is .24. This soil is moderately well drained. The slowest permeability within 60 inches is moderately slow. Available water capacity is very high and shrink swell potential is low. This soil is not flooded and is not ponded. The top of the seasonal high water table is at 30 inches. There are no saline horizons. It is in nonirrigated land capability class 2w. This component is not a hydric soil. Urban Land component makes up 30 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil. ZZ900--Paved Areas Paved Areas component makes up 100 percent of the map unit. The assigned Kw erodibility factor is Available water capacity is very low and shrink swell potential is low. This soil is not flooded and is not ponded. The water table is deeper than 6 feet. There are no saline horizons. It is in nonirrigated land capability class 8s. This component is not a hydric soil.